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ABSTRACT -- 

ft is shown that, if one expresses the hadronic scattering amplitude as 

a sum of contributions from individual quark diagrams, each of these quark 

diagram contributions will obey a logarithmic scaling law in the 

high energy fixed angle limit. The ingredients of the proof are the linear 

motion of singularities in the complex angular momentum plane and certain 

analyticity assumptions. The logarithmic scaling law emerges from the requirement 

of consistency of the behaviors of the individual quark diagram amplitude in the 

fixed angle high energy regime and in the Regge regime. Each quark diagram 

is found to have an intrinsic scale set by the slope of the "dominant" singularity 

in the complex angular momentum plane of any one of its channels, i.e., the 

singularity whose trajectory lies highest for large negative values of that 

channel's !!andelstam variable. Complex angular momentum plane singularities 

that are dominant in different channels of the same quark diagram must therefore 

have the same slope. As the Pomeranchuk singularyty and Regge-Regge cuts are 

dominant in different channels of the same (twisted loop) quark diagram, it 

follows that they must have the same slope of do.42 GeV . Assuming a small 
-2 

number of quark diagrams to dominate the physical scattering amplitude at oresent 

energies and fixed angles, the differential cross-seCtion is found to also obey a 

logarithmic scaling law which agrees with the wide-angle pp scattering data. 



1. INTRODUCTION 

Hadronic two body reactions have been extensively studied in the 

Regge regime in which one of the Mandelstam variables (s, for instance) 

becomes large, while another (t or u) is kept fixed. Much less attention 

has been devoted so far, to the regime of high energy fixed angle scattering. 

In this regime all three Mandelstam variables (Isi, (tl and 1~1) become 

large, but all their ratios are kept fixed. In other words, kinematic 

variables with dimensions of a mass squared become large and only dimension- 

less quantities (like cos8) are finite. If all hadrons had masses 

smaller than some finite mass M, one might expect that in this regime 

masses become irrelevant and amplitudes exhibit simple scaling properties. 

Proposals of this type have been made by a number of authors.' They all 

claim that there exists a dimension d, dependent on the dynamical imput, 

such that sdA(s,e) (A = reaction amplitude) scales (i.e., depends only on 

the scattering anglee) at high energies: 

dA(N -gz? u ) 8 0.1) 

The real hadron spectrum does not exhibit any cut-off mass M. 

Rather, resonances equally spaced in mass-squared and with ever increasing 

masses are indicated by experiment. If such an unbounded hadron spectrum 

is accepted, then a natural scale for fixed angle high energy scattering 

is set by the spacing of about 1.2 GeV2 between consecutive (though arbitrarily 

high lying) resonances. In view of the existence of such an intrinsic 

scale, one would have to be somewhat skeptical about scaling laws of the 

type (1.1). and explore possible alternatives. Most importantly, once a 

scale is provided, an exponential behavior, for instance of the type 
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,&, c:) ‘i6! *~,” /+I t? ) ( Y(‘.,’ ( ~- d’15 .j /~cr7 (; ‘) \ 
@ .+c.~( 1. r ” (1.2) 

may set in. here p(s,c) is bounded by some bower- of s, CL' is the scale para- 

meter mentioned above (slope of Regge trajectories) and f (case) some function 

of the scattering angle. Clith this possibility in mind, we shall explore 

fixed angle high energy scattering in the context of a quark model with linearly 

rising Regge trajectories. Dual resonance models (with loop corrections included) 

are of this type but our arguments will be more general. Our major result is 

that the contribution of any given (tree or loop) quark diagram D to thescattering 

amplitude A(s,z) in the s+ = , z = cos e = fixed limit obeys the logarithmic 

scaling law 

- (+I-‘& A(s,z, e {Cd 
2 z p‘i 

(1.3a) 

Here the "scale of the quark diagram D ', aID, is set by the slope'of the 

"dominant" singularity in the complex angular momentum plane of any one of the 

diagram's (non-empty) Mandelstam channels, i.e., the singularity whose trajectory 

lies highest for large negative values of that channel's Nandelstam variable. 

The function f(z) takes the diagram-independent (except for details of the 

imagiriary part related to empty channels) form 

,: / 3 ) - j.--z : 
li i. i 

j.<~ & 
-- - .~&,.;e< -1’.~~-. ,,+ - 1 2 Jo. L 

t 
- 7 .2 

i., 5 (1.3b) 

.: i ; : r: i j c ~ 3 5 ~2 c 5~ j,,‘.~ ., 2 ; i ; !- 5; 2 ; ,, t ‘1 i ; / ‘2 ,; ; ; ; case ci tree diag!,zms. Observe 

:' th; ;- -. !',:I '_ ~:y?J+ : Y:: [I ,z ': ~-l.;r: :I-,? e,yjjte:lce of a ljnjpg2 scale 

,.._ -;,,. ~,. ,~',~, pi!.", c:s:ej ;yf ~!TS dg,-irlant Resgn s<:;cL:- 

,, ~~ ~ : I j:- ~~ : ” ,.,. ‘j ,T,? :. [l-,5:“: .fj,?,- ci‘?F! n2jt b2 

.c, . .,‘:? 7 +’ ‘j .~.:,y : ;j;;ill o;~y:r ti:;~:t :!iz QF:e-ar:ci:i.!, 



singularity, resoonsible for diffraction must have the same slooe as Regge-Regge 

cuts or in other words a slone lhalf that of the usual (e.g. : or 2:) Regge 

trajectories. 

The logarithmic scaling la!! (Eq. (1.3)) emerges from the requirement 

that the behavior of the individual quark diagram aplitude in the fixed angle 

high energy regime and in the Regge regime be consistent. Furthermore, we shall 

see that the logarithmic scaling law agrees with the existing data on wide angle 

pp-scattering. 

The logarithmic scaling law (1.3) leads to the cut-off in transverse 

momentum often postualted in the phenomenology of hadronic reactions. This cut- 

off seems to be an inescapable consequence of linearly rising Regge-trajectories. 

Logarithmic scaling laws can presumably be generalized to multiparticle 
* 

exclusive processes and thus, via Mueller arguments, to inclusive processes. 

--- 
i 

3, 5v-L f;! 1 r y; ,-: :~‘.;.,~j y c,,~::! ji,j jzv; i..;, 1 sir,?e inclusive processes has 

,_ :- c.;, ;:e;ti :!f tl-a] vn:;,,~,,:!:~ ., ~:y~dels 3 and favorably compared 
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;. t!IGii E:/ERGY FIXED A:GLE~S~TTERII!G I:! D!IAL RESGIIA:ICE MODELS AS A GtiIGE. _. _-~-__ ~- 

Cual resonance modi?~: llave an intrinsic scale: the slope a' of tl-,? 

Rc?qe trajectories. We shall now find some regularities exhibited by high energy 

fixed angle scattering in dual resonance models. Then we shall abstract these 

regularities and in the next section Drove that they hold on more general 

grounds. 

In dual resonance models, to each quark diagram there corresponds a 

unique amplitude calculated according to the "Feynman rules" of the model. If 

one Mandelstam variable (say, s) becomes large while another variable (say, t) 

is kept fixed, the amplitude for a given quark diagram without loops either 

exhibits Regge behavior B(t)s a(t) with a(t) = cl(O) + a't or falls exponentially 

with s if the t-channel is "empty" (i.e., contains no Regge poles). In the 

same kinematic limit the amplitude corresponding to the quark diagram with loops 

D behaves in general like 

7 -, 
- ; 

#bB6, I+> s ‘ 
%C i-t) cik s +L ~$dL,51%ff<, 

and the singularities in the t-channel angular momentum plane are either multiple 

poles (in which case one deals with a renormalization effect to the input Regge 

poles) or branch points (Regge-Regge cut, Pomeranchuk singularity*, Pomeranchuk- 

Re?oc clot, etc.. .) the remarkable feature of all these singularities is that 

their positions e = aDti(t) in the complex a-plane depend linearly on t 
** 

a?’ i * ? ,>: _ ,.,t (i :, i ; . . “,, , i;o:? ~. *A” + f-1 i 

ii.2 ‘3iyi‘;i-~ ,!;:I~ CTil‘ i ‘-,a _ a p\s::-” oole, see [5]. 

. ,I, ',! : ; ,2 I r, 5 j ~ -. : ; ,A i: -:' L: .,iise ;i:lyu!2rities y-e IFrived in 

I ; ; $1 L "- or&*-, f,~Co; ;,,,car :', ~,:I I?::..- :.:i. 



Let us order the singularities aoti (t) according to their slone and interceot 

.I i 0 <.y , <. d p:; c JJi, 4 
and 

;x 3,: ‘,, 6 ) :; .;:;;-, $~~r ‘ (0 y -,;t,;, ~- ,:Y:,4 r, 

Then for large negative t, 
%1(t) will determine the asymptotic behavior 

of the amplitude. We shall call aDt,(t) the dominant singularity in the 

t-channel and denote its trajectory by 

dJt k, =r dJgt (0) + H,& t 

(dropping for simplicity the index 1). 

We can summarize all this in the form 

A) In the limit IsI >> ItI (or s * -, t = fixed and sufficient1.y negative) 

the contribution AD(s,t) of the quark diagram D to the scattering amolitude 

behaves like 6Dt(t)s 'D+) 
up to logarithmic factors or in other words 

R;L f$) (s,-i) im “‘-o& (4) fL + q&(I) (2*2) 

The Regge trajecories dDt (t) are linear* in t with slopes depending on the 

@agram D and a priori also on the choice of the t-channel. In the case of -- 

a diagram k:itllout loops and "emnty" t-channel AD(s,t) falls exponentially with s. 

In dual resonance models, for all diagrams with fewer than tl,,o loops 

(fir 
a c 

. . 1) it has b?on found"" ti:st 

* 
If c!.~,L ;jims classes of quark di;;~rams, the sum of various linear 

s:n;:larititis 9:s:: add :I? t? T:,S "renorEalized" slightly nonlinear pole or 

h:- :'L, :;c "? ;-,c,T, Li,-,; ;,::.; zizc.,- ,:' i~~<ividial quark daigrans, so we need 
p, ; t .,., 3 ,' ,: _ .:' .~ r!? "Cc1 l,a-Tt,:',?" C-lf",-+: 



[ ‘h4 (i J c; _j ~. ‘h -. 2, f r;, dii + (2.3) 
ih 3.~ 

This leads 1s to conjecture that in general 

5) the limitinq form (2.3) holds for all quark diagrams no mattet 

how many loops they have. 

Consider now the limit of high energy fixed angle scattering, i.e., 

b/ ) jc I , jq! + 3c 

(p/, I$\, /$I =p 

or equivalently 

(2.4a) 

(2.4b) 

or its crossed s-t, s HU forms. 

Again on the basis that the statements have been verified 
236 for all 

diagrams with less than two loops we conjecture that 

C) for any quark diagram D, in the limit (2.4), the combination 

@DS)-l ln A,(s,z) scales i.e., is a function fD(z) only of z. 

D) The function f,(z) is tlniversal i.e., does not deoend on the diagram 

D -. We shall therefore call it f(z) from now on. 

Q For any auark diaoram With or v:ithout loops f(z) is given essentially 

L,,:, ,' .._ .?,.^ --_lLI'-.e_mm' : f Y-i: "y 73r'L. 'a 

f 
: it \; : j{:. 2L .-co ;,;Q .i- ‘Z? AL +.& (2.5! 
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There is some ambiguity about where the cuts arising from the logarithms should 

lie in the co:.lplex 2 plane. This question has ohysical content in terms of 

the empty cilannel question and ~;ill be studied in deta~il in Section 4 . 

In view of statement C) we shall henceforth refer to the kinematic 

limit (2..!) as the logarithmic scaling regime or the logarithmic scaling limit. 

Obviously, it is not our intention to leave all these statements at the 

conjectural level. Hhat we shall rather do is, to find the relationships between 

these statements. Of course, we shall find that they are not independent. 

Fluch less than the full machinery of dual resonance models need be activated to 

arrive at these results. We shall see in Section 4 that statements B)-E) all 

follow from the assumed Regge behavior with linear trajectories plus a certain an- 

alYtiCity assumption to be formulated in Section 3 when we require consistency 

between the Regge behavior and the behavior at fixed angle. 



3. COIISISTE:ICY REQUIREtW:T IN THE "OVERLAP" REGIO:I A:ID THE ANALYTICITY ASSU::PTICII. 

The basis of the analysis :::hich follows is the requirement of consistency 

between the Regge regime and the lo2a-ithmic scaling regir?e in the kinematic 

region of "overlap" where they both apply. More specifically, every quark 

diagram amplitude obeys equation (2.3) in the Regge regime (i.e., for \s[ >> It\). 

On the other hand the logarithmic scaling regime obtains where IsI and ItI 

are both large but their ratio is fixed. Ilhen both Is\ and ItI are large 

(Is13 It/ " rni ) and IsI >> It\, both the Regge and the logarithmic scaling 

regimes are applicable, (the "overlap" region) and we require that they be 

mutually consistent. 

As can be easily checked using eq. (2.4) the overlap between the logarithmic 

scaling and the t-channel Regge (ItI << Is/, lul) regimes occurs for 

2 -9 -t I (3.la) 

Similarly, overlap with the u- and s- cha;inel Regge regimes corresponds to 

z--+ -1 (3.lb) 

and 

bf + ir; 

respectively. 

-2 -7 -a 
(3.lc) 

Thus enforcing the consistency criteria in the overlap region is going 

to give us information or (alois) -' In AU(s,z) in the kinematic regions of (3.1). 

In order to determir? the behavior o,f t;lis function in the entire z plane for 

' IS! -i d, x"; kii;d of c“~ lytici~':;; assu:-:;iior; is essential. !,!e asa::> look iso 

tile C,.~Y ~~~jOtl~~Ct? ::del for cB,i::-nc:. in the d::a., resonance model we knob: 



that for quark diagrams with fewer than two loops 

4;, i ,a. f~ ) ‘$-: ~/ (‘7 ) 

. J‘” Cd 
(3.2) 

where f(z) is given essentially by eq. (2.5). We observe two crucial properties 

of f(z). First f(z) is an analytic function of z whose only singularities are 

located at z = I 1 and z = m. Recall tilat in the dual resonance model (again 

for quark diagrams with fe%er than two loops) Regge behavior (2.2) occurs and 

the Regge residues obey eq. (2.3). This Regge behavior, in the overlap region 

(3.la), can be written in the form 

- d c it. s )LI AL AJ fs,2) b.=a 
y.tK +& 

(3.3a) 

where we are neglecting terms which are both zero and regular at z = 1. 

Likewise we have 

(3.3b) 

and 

-p& s)-‘~,, 5 ls,-2-J ,5z* - ;* Jn 2 
37-b 

(3.3c) 

Limiting behavior implied by the consistency conditions eqs. (3.3) is, of course, 

exhibited by f(z) of eq. (2.5). 

The second important property of the function f(z) is that not only 

does f(z) satisfy eqs. (3.3) but these condtions are sufficient to determine 

its form. More explicitly, if we require that the nature of the singularities 

of f(z) .?: z = : 1 and z = ri be of e):actly the form given b:r the consistence 

crit?!.f? I' .3) (e.g., tilst there be cc t-:71 (1-z)'ln(l-z) in (ri'Dts)-in AD (s,t) 

<,a z ,- 1) the;, 5:~) __ -,.:;t have tile general form (2.5). !,!ith the above discussion 

7 a> * 2, :; c:_. jtz'- C(,'r- :,:. L ~. ,.. : 1 / ,-~+:-~tion in the form: .: I ,_ 3 L> _ 



K_The leadinc-term in the asymptotic~(large s) expansion of the function 

1-l CtS 1 y -iL" -'in A,(s,t) i- T-~:lytic in z except :(ir oossible singulariiics at -__ 

z = i 1 and z = m, -- The nature of these sinoularities is completel!/ determined 

by the consistency criteria in the overlap region. 

This analyticity assumntion may not ssem natural at first sight and 

we shall therefore try to motivate it further. A priori, the function (atDt s) 
-1 

In Ag(s,t) could be expected to have many more singularities in the variable z 

than those discussed above. In the limit s + m, AD(s,.z) has singularities at 

the points 

2 * ~mcic x2 - c / ) -2 =- (- ,+ mL s > O.- s ) 
(3.4) 

Here mtn and m un are the masses of higher lying particles and/or thresholds 

in the t and u channels respectively. Because of.the linearity of the trajectories, 

even in zero loop diagrams (f:; which no multi-particles thresholds exists), 

there will exist m,'s larger than any mass M. Moreover, since the difference 

mn+l - mn 
2. 1s constant ( Y 1.2 GeV2), one sees that as s + - the singularities 

(3.4) cover even more dense$the half-infinite straight lines 

2 = If 'r p-ip 

and 
~-yZ@pO 

(3.5)' 

% = - , -~ v? ~, 
/ r 

- i y' 

(here $? = &.:. s). 
6 

If, fcr example, all the original singularities were poles, 

tile s + - lir:? yields t:ro continuous lines of poles extending from -f 1 to m and 

frc-, - : to __. -8.' l:sls ilX”iS’S hi0 Cuts \!ith bra;:ch nojnts at z=+l and m. A similar 

*, ! _ .' 5 1 c j ~: ::. I; :. i :~ .; 0 *, .. 'y "C - /, .:.': ';^G ty~;~<zs!~,, Id singularities amongst (3.4). 

1 : j ; : in, 2 c :: ! i !J 5 j F, 1 2 t i 7 :, : ?, j s,, -. m, ,S, c ( s 1 z ) should have singularities only at 

: ;;,,; 7'~ ,, ,;.;-,i c,.:;, vr-.r.9<,i.;it t;;; "concleniation" of t!:e actual physical 

:./ ,la,-;t:Lc if; jr :s,; StF:~,;~~- tc :.xs:.re Cat ln AC and hence (,, 'Ds)-'ln A, Y 

. ,~ '.~.:-y :I :: jr, J',,-t",~ :i. \..: ,::i'~: Of ;O!ii’se, ijncri:;.: 5ossi5le isclatei _ ,. 
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zeros in AD at t c 0 such as nonsense, wrong singnature zeroes.) However we 

shall assume that, in the zc;jmototically leadin:! term of (yL' 
0s) -'ln A<,, the 

L, 

only singularities are the above branch points at z = r 1 and m. The remaining 

singularities which one may expect are to appear only in non .I?ading terms. 

This then is assumption F as mentioned above. For technical reasons, which 

will be clear shortly, we cannot proceec! without it (or some related analyticity 

assumptions) so we shall henceforth accept it. 



4. JUST-ICATION OF THE Ll?GAR~Tt!MIC SCALIllG LAN 

We are now in a position to consider the stater:ents 6) - E) made in 

Secti on 2. Our basis for stud:lin1 them is the Regpe behavior assumption ?+) 

of Section 2 and the analyticity requirement F) of Section 3. 

Once these are granted v!e can start proving the remaining statements. Ye 

first observe that because of A) the conditions of the Cerulus-Martin-Chiu-Tan7 

theorem are met individually for every quark diagram. We therefore conclude 

that 

Lemma Assumption A) implies, for every quark diagram D, the bound 

_ p;ts,)-‘h ip, c~,~J/ < CIF)LS 1~ k;Gd td’ 
(4.1) 

where c(z) is a positive definite function (of course this upper bound on 

-InlAD is a lower bound on lADI). 

To prove the remaining statements we will extensively use the method of 

requiring consistency in the overlap region between the Fcgge and fixed 

angle regions which was discussed at the outset of Section 3. As'was pointed 

out, the Regge limit requires that eq. (2.2) hold. Now one can distinguish 

four cases appropriate to the fixed angle limit (a'Ds, 
a' Dt.' a'Du are the 

a priori different slopes of the dominant s, t, and u channel singularities of 

the diagram 0): 

---;? cj and similarly for ;s, 
,c / ." .‘j-- i Js lsj 

i :; ll& fj _, ,,L4 Lt ~-i 4lii :;;x; c 
i “: 

ard sinilarly for ,< /s) 
! -L)i 

and ,,,2 
i<>), (I( ) 
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iii) .:,,i j ,)~ ./.<J -t-t,. L --" i' li! ,'L'~., ,. r' and similarly for 3 
,4, 

is ) 

and j,L< (L 1 Edith at least one of thi constants Cl, C 1 I i',, 

cliffkent fror: - 1 

iv) ..L ~' :ilnc '.2& f i;; i 3 -1 and similarly for,& f S) 

and p& (k) 

Consider first case i). Then, in the "overlap" region of the Regge 

and fixed angle regimes the In jDt (t) term in Eq. (2.2) will be the dominant 

term. If we consdier now the corresponding equation for In lAD[, it will also 

be dominated by the In lflDtj term and becomes 

c&J; 5 ) -'Ai /A, (5, a] > p&L .s,-'";$4* J+J (4*2) 

Note that 

,Aq& - AL pJ/ +LkJ j-- h/< 0(-t) 
(4.3) 

holds since throughout what follows we shall be assuming linear trajectories 

and "signature type" phase factors. These relations, together with i), yield 

the following result in the overlap region 

(I- 2) ti,s 
--. --------5-O 

-(-.$ ; j*l..G,, IA> (s, Z> ] 1; '* 
-.L ‘I\. ciGeil> 73:fi (4.4) 

In particular for the t channel overlap region we are interested in, z is near'l, 

(recall, t? - 2 (1-Z) s ) . Similar results hold for z near - 1 (u channel) and 

~ F-C :; Cy:d:;:pe!) . ;:s:-, :z -;!-!;. a:‘:' iL:Sitive definite C(z) if z is in any of 

aL ~ 1 G'.';:-l /' ri-is-5 z ~. l,, 1 i - 1, I 7 ., - ,C, 

!-. :; ,) ,, <” ~_. ;‘.,. ( \ 1 -I -.& 
.s i- :. ~~ 

L ..? ; :I ’ /Ap /;; a/ 
(4.5) 

: ;/.. pi 



which contra!licts the lemma (note that we have specifically ruled out the possi- 

t: lity of exoonentially large anolitudcs i.e., we take bcth sides of eq. (4.1) 

!r,, be Foji'Le! and this ercTudes case i). 

For cases ii) and iii) \ge can nov: proceed by defining the function d(z) 

as 

;/j 3 (s;~?> ; _ =‘. ril-7) fis TLY4) 
; -- j,,, 

(4.6) 

According to the lemma and our assumption of "signature type" phases this must 

be the leading term. (P!ote that it would not have been leading in case i) ). 

Assumption F) then implies that d(z) must be an analytic function of z except 

for possible singularities at z q i 1 and z = -. 

Consider case ii). From eq. (2.2) the leading term in the [t-channel) 

Regge limit of In AD is now alDtt In 5. This limit , in the overlao region, 

appears as IsI >> mi, Itl >> mz but It/s1 << 1. These conditions as has 

already been been pointed out, then translate into 1 s\ + - , z-+ 1 in the fixed 

angle regime. Thus we have 

- (& gf J?, A 
3 

(s, 2) m -” & * $-Qs 

e +I (4.7a) 

or 

(4.7b). 

tence d(:! is reni:lar at z=l. In the overlap region betb:een the fixed z and 

J c;,,. .i,;e; "2~77,: rcgil:.:; (I-1 :.:. ;I? 1ti >> i,? 
P’ 

+, Is/t1 cc 1, or /s\ ~+ m , z + - m) 

I*'; -1 ; f 2 ,2.: ;- ; : ', ;.;.: < 5 ji ,,fe p !jy ti ,.? ,s ' _ .- s In s part of the :i'bs s In t term (the 

.2r:,s in z par'. of t/i2 terr is .givei~i by the next. term in the asymptotic expansion 



in s and does not contribute to d(z)). Thus we have 

(4.8a) 

or 

(4.Eb) 

Finally in the region of overlap with the u channel Regge regime (IsI >> m:, 

ItI >> m2 o, I:1 5 /lt t/s1 cc 1, so that Isi + m, z + - 1) the leading term 

is dDU u In s and we find 

- (if:, 5P.k 4,w bz - d:I;Lc his =r & lyJAs 

t 3-l 

d& s cd’ be 
(4.9a) 

or 

d L?:t) ---&-y 

s 

5) (g?) 

bt 

(4.9b) 

From (4.7) and (4.9) and assumption F) it follows that d(z) is an entire 

function of z . Condition (4.8) then implies that d(z) a constant which is 

incompatible with (4.7) and (4.9). Thus case ii) is ruled out. 

Case iii) is treated along the same lines. We find that (4.7b) - (4.9b) 

are rep1 s.ced by 

c;;’ L,j ) ---- .> ( i.: 
3-l \ 

& > ( 7 ) 

,I 
G(‘/i) _ 2 .- /i.+ (‘,i ) T,??. 

:. - /’ c u;- 

(4.10) 

(4.11) 

<,I ;:. -, ~-~_ ~. ..~> !I f L.. \ :: ) ;,L$ ( L$-.) (4.12) ,,, , _ , 
DC 



Assu;nption F) again imolies that d(z) is entire and therefore that (4.19) - 

(4.12) are incompatible as ion; as at least one of C 
s' Ct' 

Cu is differe::: 

frc;: -1 . 

He thus find that case iv) and hence statement B), is the only re- 

maining possibility. Let us now convince ourselves that case iv) is indeed 

allowed and that no contradictions arise in this case. 
l 

In case iv), Ct = 

= Cu = Cs = - 1 and from tqs. (4.10) - (4.12) we see that d(z) E 0. Thus there 

is now s In s term in (*lots) -'ln AD. As required by the Regge regimes the 

leading term in In AD must be at least linear in s,'so that 

- &5j'L Ad (s, d gyd(e)t O & 
D ( ) 

2=pd 
(4.13) 

where fD(z) is nonzero. This establishes.Statement C. It follows that it is 

no longer sufficient to consider only the leading asymptotic -aDtt ln(t)tem in 

In BDt(t) but one must also consider terms of order t as such terms will con- 

tribute to fD(z) in (4.13). Define therefore 

A lJ., iQ 3 - c 
dLt f d&d- + cot &A. -t (4.14) 

where CDt is in general a complex, diagram dependent constant. The constraints 

which result from requiring consistency in the overlap regions (the analogues 

of hi>. (S.;O) - (4.12)) now becoii;e 

j> 1’1) -,,I 3 it 4, L) +~ & (‘2~) (4.15a) 
, 

*?cc~ll th;t ife are disr?carding irrelevant complicati ons due to signature- 

,;: ',1,.:-i‘;. T::zi- ;;f]~; ::..2 TLp'yi, I'" $1 ti;z z:.-' of t,,is *n,-ti"[,, . CL 



Jo Jr‘.) __~--+ $<! ‘Z> A< ~2 
2~ -7-1 ,1T;-’ :< .- /ri‘J ( 

+ 5, $ 
.c JI’ i) 2 (4.150) 

i; f !Jr 

-I;; (?~ j ---+ -- .<i5 4ii 7 
.i -> - cr A !, I. 

._ C-i, y& 

d& 
(4.15c) 

klith the appearance of the logarithmic singularities it is useful to consider 

the following equivalent, but more suggestive forms: 

4’ / ) 
i-2 (f-t) 

.J -? l- 
a ..!lL (Z.7) + B 4, ----3 a -- 

at4 I ++ -7 I “+L 'fw"'(4 163) 

+ Mh CW $-, 
(4.16b) 

where th,e M's and a, b, c, d are determined by the CU's. The logarithms are 

so defined that they have a cut extending from the branch point (z =+I or - 1) 

to infinity along that part of the real axis where their argument is negative. On 

the upper lip of this cut they are defined to have an imaginary part equal 

to ir. These equations (4.16) then determine the nature of the singularities 

in fU(z) at z = ? 1 and m. Using the analyticity assumption F), the nature 

(4.16) of the singularities at z = k 1 of fU(z) .then establishes the ' 

form of fC(z), the leading term in - (a'Uts)-'ln AU(s,z), to be: 

r:, i-s) = - ‘y’L n L (, -2) ~, 1. & (i -,> -- 
ci -c 5 -I 

d' 
9% i/:p ) p t% b+t, + ‘3 -(:, (-,-$) 

".F 
I '\ - :, ! / 'I--~ c '7 ; _I 

(4.17) 



where E(z) is an entire function z. !IOW in the limit z + -m we have 

-jp !? ,! 
7 d., /iii i i .i 

7 _- 1. ~?jl 
t ~,?a A ” “;, 

) -- 2 (g. + 9 & p/ 

i ,? (h) (<A .- ;,+ L)? y+;(( 
Ir 

t O(‘) (4.18) 

pi 

Since E(z) is entire, asymptotically it cannot cancel the z In jzj term. SUCh 

a term is ruled out by the overlap constraint (4.15~). Thus we must have 

(4.19) 

Next by comparing the In 1.~1 terms in (4.18) and (4.1%) and using (4.19) vie 

find that 

(4.20) 

Finally, we study E(z) by first considering the behavior of fB(z) in the limits 

Z-+- - and z + + -. By using our knowledge of the singularity structure 

at infinity (given by consistency with fixed s Regge behavior, i.e. (4.15 c)) 

we find 

g (-?) 2~-~ ,’ e - $ in- -5 - -d-- ) 
c Nt b C+-d 

and 5,' A-c z -, 
0. f~i 0' + c 

where e is some constant. E(z) being er,tir? ,must have this form everywhere. 

i,~ 5-d :I:; c:;,::;j5;e:';C., I, b:!ith fixed t a:;:' fired u Oegge behavisr ~2 rec,gire fD(z) 

1 ( c :, ~5 . ( 4 1 ~I \ .? 7 1 \::.15b)) and we find / I 

~~. .-, 
tl ,!;, :( i- .-- 

-. 

and 

c ,~ ~1 , <~ :‘i. 
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SC that EC& l;,z-r +g 

dere +i7/2 cOrreS~c~:,lds to taking the $1ysical Z values to cnrresoond to aonroach- 

ing the real axis from above. Colle;:ins all these results w find, for a 

diagram D with Regge behavior in all chanliels, i.e., no "empty" channels, 

Except for the~question of empty channels to be discussed below, this 

result is independent of the diagram 0. Note that for our definitions of the 

logarithmic cuts T(z) is real for all z on the upper lip of the real axis. 

Further, we saw that 

4it : ol;, ; cd’ All = d/ b (4.21) 

so that a'D defines an intrinsic scale for the diagram 0. We also note that the 

function f(z) of Eq. (4.20) differs fromVenezian.o's function 

I+.* $i,z -y c;, 5 + ~ & -& 
(2.5) 

only by a term that is purely imaginary for real z. As far as cross-sections 

for physical processes are concerned these two functions are completely 

equivalent. It isin this sense th?t the validity of statemerts D and E is to 

be regarded as established. He can summarize our results in the form of two 

tlie3rems. 

Theo+-en 1. !~,ssun~'ionc A, ) a;d F) irnly statements 6), C), D) and E), 

and 

Tneoi,~, 2. ;iss:;~r:?tions ,A) and i) further inoly that for anv quark 

c! pi i ,T i- '~ >:;i '!I ,y! !.~: + ,oF'-,t,, r h rj,jc el s t +e trajectories of the dorrinant comolex anaular 



-- 

mon:entullpl_ane singularities in all (three) Kandelstam channels must have the ' --- 

same slope (see e. .__- . (4.21)). -- 

This concludes our proof. !:liiat ~;'e have found is that the assumptions 

A) and F) are sufficient to derive all the scaling laws, stated in Section 2. 

l!e also get the bonus of Theorem 2, which, as we shall see in Section 6, leads 

to an interesting result concerning diffraction. 

To conclude this section we shall briefly discuss the case of tree 

diagrams with empty channels. Consider, for example, the diagram of fig. la 

which has an empty u-channel. For It/, IsI -+ - , and u fixed, this amolitude will 

not evidence Regge behavior (i.e., does not take the form B(U) s a(u)) but rather 

will fall exponentially as a function of one of the large kinematic variables, 

say s. In the overlap region with fixed z this requires the appearance of a 

negative imaginary constant term C in the z -+ - 1 limit of fD(z). When IsI -t m 

and arg s - E > 0 (the correct Regge regime in the narrow resonance approximation) 

the term - SC in In AD will supply the appropriate exponential fall off 

(Re(-SC) + - a). The steps given above can be easily reoeated including 

the appropriate term of -in in Eqs. (4.15b). The result we find is 

4-M 
empty u channel 

Similarly for the other cases ~:e find 

4 (-t ) .; y ,d, ‘L ii-8 
- .r .-~ 

empty t channel 1-P 
A,, i 

L -I- fy 

/ 
1; I~? j 

,~LA 
I. ., ‘;.!. .L ., 

i .I+ 
~~~.. r, -i,-_ 

/ ‘C 
e:,:p:y s c’:a:;?:; 

i-r in 

(4.22a) 

(4.22b) 

(i.22i). 



where the latter case is just the usual Veneziano result (Eq. (2.5)). Acain we 

emphasize that the results in E?s. (4.22) differ fro!? Ea. (4.23) only in t!le 

imagini!ry hart. Hence when a~-:‘ r is small (the physical case for narrovi 

resonances) and z not too close to I 1 the corrections to loparithpic scaling 

due to eirpty channels are expected to be very small. 



5. PHYSICAL fZEAIlI;lG OF THE LOGARITHMIC SCALING LAII 

We have established on rather general grounds the logarithmic scaling 

law expressed in statements C), D), E). Of course this is not a usual scaling 

law connected with .some form of scale-invariance. It rather tells us that the - 

hadronic amplitude corresponding to a given quark diagram has an intrinsic 

scale (i.e., a very specific breaking of scale invariance) given by the common 

slope of the dominant Regge singularities in all its Mandelstam channels. This 

intrinsic scale permits the construction of an essentially unique dimensionless 

function of the Mandelstam variables that determines an exponential fall-off 

when all Mandelstam variables become large but their ratios are kept fixed. 

This exponential fall-off can be viewed as a simultaneous cut-off in the transverse 

momenta of all the (nonempty) Mandelstam channels. - The high symmetry of the 

dimensionless function essentially shows that transverse momenta in all channels 

are kept within identical bounds. 

To see this in more detail we remark that f(z) differs from the combina- 

tion 

(i$ 3 j’ [ s 4% s + -i. .!,, .t f- u &L/J 
(5.1) 

only by iirr which is irrelevant for the asymptotic behavior of differential 

cross-sections. From the foi;- (5.1) it is clear that whatever differences 

there may be between the three Mandelstam channels (like different Regge inter- 

cepts, different internal quantum numbers, etc...) are "washed out" in the 

loz?ri?I>?:ic scaling] r?gir?. These differences which account e.g., for for>/ard- 

bazA:i;-:: 6~; ,,'::et; ?z c:-i: ~:;iat: in t;;.c ::c+cr p(s,z) of Eq. (1.2) whicfi is 

rr:,ar-bcui?ded in s so i!lat its contribution to (a' 
OS) 

-1 In AD goes to zero like 

S-'li! 5 icf large enci-::iej. 



6. THE SLOPE OF THE POMERAIJCHUK TRAJECTORY, A SIMPLE APPLICATION OF THEOREM 2 

According to the twisted loop model of diffraction,8 the Pomeranchuk 

term originates in the quark diagram of fig. Id. Many predictions of this 

model are in good agreement with experiment. 
9 

This diagram has been evaluated 

in dual resonance models 5,lO and it is found there, after elaborate calculations, 

that the slope of the Pomeranchuk trajectory is 

(6.1) 

where a' is the universal slope of the hadronic (p, N, K*, A, etc...) Regge- 

pole trajectories. 

This result can be simply understood on the basis of Theorem 2. The 

Pomeranchuk in the t-channel appears as two consecutive Regge exchanges. But 

as t;-,ese are not "flanked" by crosses (i.e., by particle-Reggeon amplitudes 

with third double spectral function) the resulting singularity,(according to 

Mandelstam and Finkelstein") is not a Regge-Regge cut or sum of such cuts. 

By looking only in the t-channel there is thus no simple explanation of Eq. 

(6.1). In fact the t-channel also exhibits a double pole (renormalization 

effect) with slope CL'. 

In the s-channel we also have two Regge exchanges, this time flanked 

by crosses so that they do lead to Regge-Regge (RR) cuts. These are the only 

and therefore dominant singularities in the s-channel. Thus 

I 
t+ diR 

(6.2) 

But, the slope of RR-cuts is well known to be given by 

(6.3) 
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f: 1 Iheorer~- 2 l;;e then see that the double pole in the t-channel cannot he dc?inant 

(a: i-s slope is 3') and that therefore the Pomeranchuk trajectory must be 

ou ; ;,tinx 

and 

d’ 
a= 4;: z d; 2 d; 

(6.4) 

(6.5) 

This proves (5.1).* 

Because the same quark diagram that behaves for large s >> - t >> men 

as s 
a,(t) 

*behaves for t >> - s >> m2 as taRR(S) 
P 

the slopes of the Pomeranchuk 

and of the RR-cut must be equal , or else the law that every quark diagram 

has a unique scale would be violated. 

More generally, the scale of any quark diagram can he simply determined 

from the knowledge of the slope of the dominant trajectory in x one of its 

channels. This then requires the equality of the slopes of many further pairs 

of complex plane singularities. !Uith linear Regge-trajectories many such 

equalities occur (e.g., alRRR = alpR, alRRRR = alpP, etc...) 

* 1 i 
L,J~:Flac? -- h;s -,;:,te:! o:.:t ti;;it ;:!7: eouat.io;,s a’ = :,I 

5 t 
= cI’ ::hich ?,TE 

:, in :,.-lc’ r::,- t’~~ :‘.:;-r i,~!.1,‘ 0: tr,, C;cl reson-:ncn model , imigllt s"erve as 

:,:.;, ,:).:;i,':L; ::y i:~.z s;,y?e 0' t;ye Poretanchtil singularity, 
j f I:., cam :d ,: ;:,:Y;'::::,v.i -.", " ,>,~' :I-., .-~!,,s ,.,ii,, is, 1 oo'?s, 
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7. PHENOMENOLOGY OF FIXED A;IGLE SCATTERIBG 

To apply our ideas to experiment, we have to first observe that all our 

results :zrtained to the a::;!" ,-udes attached to individual quark diagrams. 

In experir:ent one does not measure such amplitudes, but rather an infinite sum 

of quark diagram amplitudes. There is no guarantee, that such an infinite 
t 

SW cannot behave in a radically different way from its individual terms. One 

might consider, nevertheless, the possibility that for certain intervals in the 

variables s and z = cos e one , or a few, quark diagrams will dominate the sum. 

This is similar to the idea that in the Regge regime one or a few diagrams 

dominate the sum, which is known to work in reality. According to our logarithmic 

scaling law 

A?n AD 6,~ ~,-, rx > d; s .{b i c&q (7.,) 
+ = #k*d 

where "'D is the scale of the quark diagram D. If the quark diagram D becomes 

dominant, 

R,$- AL p/” ,” 4.c //4,/z 

so that 

,I 
: & 
k LCS * M; q(t) -t 0(-&s) 

(7.2) 

(7.3) 

T!IUS In dqdrshould be an approximately linear function of the variable 

"P = s f (2 ) . In fig. 2a we present the data 13 
for wide angle pp-scattering 

c1ptt-4 ::yait ;'. I: ..ie conce;.?rat: 
6 i" 

first on?,fvalues in the ranl;e 

c, < ; - . . _ b' _ l-3, i,:,; ths~t _ 2 <;JI? :.t varip'.!j 5 ,dalues see:? to lie on a single 

~---__-- 
* 

Al tb:I’;!l ;:!~ir i ,y:,l,!t j s very d'ffe,-ent, it could even haopen that sums 

0 \ f? I. : ; ~-:- ,,, :v. :': t,3i-i~ ; z ::i:;, 1; thz scalin? behcvicr of Eo. (1.1). 



straight line in agreement with our expectations. The slope of the straight 

line suggests zBD i-.-: 0.4 Ge!' 
-2 fcr the diagram dominant in t$isLi range as one 

would ery:t for single Por:erz::c?Jk exchange. Xext no~t9 that for 15 L.*"', 30 CX~~ 
t- 

- 

the data at the various s ,ialues do not agree but do seem to lie on straight 

lines which are parallel to a surprising degree of accuracy. This suggests 

considering a more general form such as in Eq. (7.3) i.e., In dc/dt + a In s. 

In Fig. 2b we plot In do 
/dt + 3.3 In s (the value 3.3 is purely phenomenological). 

For the range 15 2.i;'~ 3C, the common slope indicates that the dominant diagram 

has CL'~ ~0.26 GeVv2 which is suggestive of a PP-cut term *I as one would expect, 

for example, in a naive eikonal model). This combination of two terms, one 

dominant for $2 15 and one dominant for 5 2 ?;rC 30 offers a simple explanation 

of the well-known break in the high energy pp-angular distribution. Although 

the agreement between Eq. (7.3) and the data is quite striking, it is by no means 
** 

decisive. Indeed it has been claimed that the same data are well fitted by 

a scaling law of the type (1.1). Thus more experiments are needed, before one 

can distinguish the logarithmic scaling lay) from asymptotic scale-invariance. 

* 
If this interpretation of the data in terms of P- and PP-cut exchange is 

correct, then one would expect pp-scattering in the similar kinematical region 

(5 <Q'< 30) to scale logarithmically just like pp-scattering. F!oreover ln'"/dt 

for pp and pp scattering are expected to be nearly equal in this region. 

**TO dc 3 detail& fit k!?th t?e t,:o terms suggested above riould re;u!'re, 

for example, precise knowledge of the relative phases. 



A most important experimental task is the measurement of laroe angle-hioh energy 

differential cross-sections for inelastic scatterino, i.e., for reactions like 

-:l-charae cxch?-ae scatterinc, associated nroduction, or resonance nroductior L-~-L-~ __I -..__ _ ~~ 

e.g. , ( FYI + ii> etc... -) As there is no Pomeranchuk term in such reactions anl 

the Regge pcle and cut slopes being larger than Pomeranchuk or FP-cut slopes, 

one expects larger values of P' D for inelastic scattering than for elastic 

scattering. 



8. CO~~lCLUSIONS -,-__ 

We have seer tilat in a world wit;; straight line Regge trajectories, 

individual quark di 2;:. ams leave an intri!:sic scale which can be cbtained from __--~- ~ 

the logarithmic scaling law (1.3) (or more generally (7.1))*. Dominant 

singularities in the complex angular momentum planes of the various (non- 

empty) Yandelstam channels of a given quark diagram must have the same slope 

as dictated by the existence of the intrinsic scale. This has led us to a 

simple explanation for the equality of the slopes of the Pomeranchuk singularity 

and of Regge-Regge cuts. Phenomenologically too, this picture agrees with the, 

admittedly meager, data. As was stressed before, more experiments especially 

on inelastic two body processes (A+B + A'+B' with A' # A and/or B' # B) are 

needed before this picture can be established or ruled out. 
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L li nil 'i~:tf~-;j;:,,:' '- j i,, ;;;, / ,; ; -1~ inrz;tijate iogarithzic scaling lays 
also for exclusive nultipartic:e orocesses. Via Mueller 

t !-; " r, c i T 
tyoe arguments one 

,C,' 
i ; j ~ ,~ f th i S 

'!: lo;?! 2~::: scali!!? la, i for inclusive processes. A special 
j: ,,! 5 51 21.1 a] !'C?,~!J/ C,;:.,j j .c';"';-i hy !!uang and Segr& and de Tar et. al. 
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FIGURE CAPTIONS 

1: Fig. quark diagrams with less than two loops for meson-meson scattering, 

2: Fig. Tests of logarithmic scaling in pp-scattering. 
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